Жентральный ордена трудового красного знамени научно-исследовательский и ИНСТИТУТ СТРОИТЕЛЬНЫХ **МЕТАЛЛОКОНСТРУКЦИЙ**

ЦНИИПСК

им. МЕЛЬНИКОВА

(Основан в 1880 г.)

Российская Федерация. 117393, Москва, ул. Архитектора Власова, 49

46" 12 OL

No 44-2491

Телефон:

128-57-86

Телеграф:

MOCKBA

БАШНЯ

Телефакс: 960-22-77

E-mail

centr@stako.ru

http://www.stako.ru

ЗАКЛЮЧЕНИЕ

по результатам оценки прочности цинкового покрытия и его коррозионной стойкости на стальном профиле производства фирмы «Armstrong Europa GmbH»

Настоящее заключение составлено в соответствии с гарантийным соглашением № 44-1353 от 12 ноября 2002 г. между Федеральным научно-техническим центром сертификации в строительстве (ФЦС) и ЗАО «ЦНИИПСК им.Мельникова».

По заданию ФЦС проведена оценка прочности цинкового покрытия, его толщины и коррозионной стойкости цинковых покрытий на двух стальных профилях подвесной системы производства фирмы «Armstrong Europa GmbH». Характеристики профилей приведены в табл.1.

Таблица 1.

Подвесная система	Эле-	Поверх-	ерх- Характеристики защитного покрытия			Результат испы-	
Armstrong	мент	ность	Защитное Толщина Су		Суммарная тол-	тания цинкового	
	про-	гнутого	покрытие	цинкового	щина цинкового и	покрытия при	
	филя	профиля		покрытия,	лакокрасочного	изгибе на 180° по	
				мкм	покрытий, мкм	ΓΟCT 14918-84	
1	1	Наруж- ная	Цинковое	6-7	-	выдержало	
		Внутрен- няя	Цинковое	6-7	-	выдержало	
	2	Наруж- ная	Цинковое + лакокра- сочное	1-2	23-26	выдержало	
Javelin 24		Внутрен- няя	Цинковое + лакокра- сочное	1-2	6-7	выдержало	
	1	Наруж- ная	Цинковое	7,5-8,5	-	выдержало	
		Внутрен- няя	Цинковое	7,5-8,5		выдержало	
	2	Наруж- ная	Цинковое + лакокра- сочное	7-8	30-32	выдержало	
3* Prelude 24		Внутрен- няя	Цинковое + лакокра- сочное	7-8	16-17	выдержало	

^{*} На поверхности элемента профиля 2 в месте его изгиба на 180° (участок 3) имеются микротрещины лакокрасочного покрытия до поверхности цинкового покрытия, которые обнаруживаются при 6^х увеличении.

Измерение толщины покрытий проводили с помощью окулярного микрометра АМ9-2М на приборе ПМТ-3 на поперечных микрошлифах и электромагнитного толщиномера марки МТ-20Н. Образцы профилей были предоставлены ФЦС. Результаты измерений представлены в табл. 1.

Как видно из результатов измерений толщина цинковых покрытий на элементе 1 профиля Javelin 24 составляет 6-7 мкм, на элементе 2 значительно меньше -1-2 мкм. На поверхности элемента 2, кроме того, имеется дополнительное лакокрасочное покрытие. В месте изгиба элемента 2 на 180° имеются микротрещины лакокрасочного покрытия до поверхности цинкового покрытия, которые обнаруживаются при 6^{\times} увеличении.

Толщина цинковых покрытий на профиле Prelude 24 несколько выше -7-8,5 мкм. На элементе 2 профиля также имеется дополнительное лакокрасочного покрытие, на котором в месте изгиба на 180° (участок 3) обнаруживаются при 6^{x} увеличении микротрещины до поверхности цинкового покрытия.

Прочность цинковых покрытий оценивали по результатам испытаний при изгибе на 180° по ГОСТ 14918-84. Растрескивания и отслаивания цинкового покрытия в месте изгиба не обнаружено. Покрытие выдержало испытание на изгиб 180° по ГОСТ 14918-84.

Оценена в соответствии с ГОСТ 9.040-74 коррозионная стойкость цинковых покрытий на стальных профилях Javelin 24 и Prelude 24. Расчетные сроки службы цинкового покрытия в атмосферных условиях Московской области при отсутствии коррозионно-активных газов и внутри помещения представлены в табл.2 и 3.

Таблица 2. Расчетный срок службы цинкового покрытия в атмосферных условиях Московской области при отсутствии коррозионно-активных газов

Профиль подвесной системы	Толщина цинково- го покры-	Продолжите увлажнения (9.039-74	πο ΓΟСΤ	Скорость кор 25°С по ГОС мкм/ч	Расчетный срок службы цинкового	
Armstrong	тия, мкм	адсорбцион- ной пленкой влаги	фазовой пленкой влаги	под адсорб- ционной плёнкой влаги	под фазо- вой плен- кой влаги	покрытия в годах*
Javelin 24						
- элемент 1	6-7	1050	2060	$2,2 \cdot 10^{-5}$	$2,1 \cdot 10^{-3}$	1,4-1,6
- элемент 2	1-2	1050	2060	$2,2 \cdot 10^{-5}$	$2,1 \cdot 10^{-3}$	0,23-0,46
Prelude 24		,				
- элемент 1	7,5-8,5	1050	2060	$2,2 \cdot 10^{-5}$	$2,1 \cdot 10^{-3}$	1,7-2,0
- элемент 2	7-8	1050	2060	$2,2 \cdot 10^{-5}$	$2,1 \cdot 10^{-3}$	1,6-1,8

^{*} Рассчитано по формуле (ГОСТ 9.040-74):

$$M_{ au} = M \cdot au^n$$
; $M = K_{a\partial c} \cdot au_{a\partial c} + K_{\phi a 3} \cdot au_{\phi a 3}$, где

 M_{τ} – ожидаемые коррозионные потери за длительное время эксплуатации, г/м²;

M - ожидаемые коррозионные потери за первый год эксплуатации, г/м 2

n=1- коэффициент, учитывающий влияние продуктов коррозии на скорость коррозионного процесса;

т - срок службы цинкового покрытия в годах;

 $K_{a\partial c}$ и $K_{\phi a3}$ - скорости коррозии цинка соответственно под адсорбционной и фазовой пленками влаги в условно чистой атмосфере, мкм/ч;

 τ_{adc} и $\tau_{\phi a3}$ - продолжительность увлажнения поверхности соответственно адсорбционной и фазовой пленками влаги, ч/год.

Таблина 3.

Расчетный срок службы цинкового покрытия внутри помещения при отсутствии коррозионно-активных газов в зависимости от продолжительности увлажнения фазовой пленкой влаги

Профиль	Толщина	Скорость корро-	Расчетный срок службы цинкового покры-					
подвесной	цинкового	зии под фазовой	тия в годах* при продолжительности пре-					
системы	покрытия,	пленкой влаги	бывания фазовой пленки влаги, ч/год					
Armstrong	мкм	при 25°C, мкм/ч	10**	100**	1000	2000	3000	
Javelin 24		-						
- элемент 1	6-7	$2,1 \cdot 10^{-3}$	~ 300	29-33	2,9-3,3	1,4-1,7	1,0-1,1	
- элемент 2	1-2	$2,1\cdot 10^{-3}$	~ 50	5-10	0,5-1,0	0,25-0,5	0,16-0,32	
Prelude 24						1 3,= 3,5	, 0,10 0,00	
- элемент 1	7,5-8,5	$2,1 \cdot 10^{-3}$	~ 300	36-40	3,6-4,0	1,8-2,0	1,2-1,4	
- элемент 2	7-8	$2,1\cdot 10^{-3}$	~ 300	33-38	3,3-3,8	1,7-1,9	1,1-1,3	

^{*} Рассчитано по формуле (ГОСТ 9.040-74):

$$M_{\tau} = M \cdot \tau^n; \quad M = K_{\phi a \beta} \cdot \tau_{\phi a \beta}$$

** При отсутствии адсорбционной пленки влаги и коррозионно-активных газов. За адсорбционную пленку принимают пленку влаги, образующуюся при относительной влажности воздуха равной и более 70% в отсутствии осадков и росы (ГОСТ 9.039-74). При скорости коррозии цинка под адсорбционной пленкой влаги при $25^{\circ}\text{C} - 1.6 \cdot 10^{-4}$ $\Gamma/M^2 \cdot \Psi$ (2,2 · 10⁻⁵ мкм/ч) и времени увлажнения 8760 ч (1 год) расчетное значение коррозионных потерь составит 0.19 мкм.

Представленные расчетные данные показывают, что в атмосферных условиях коррозионная стойкость цинкового покрытия незначительна и составляет для профиля Javelin 24 всего 3 месяца (0,23 года), а для профиля Prelude 24 – 1,6 года. Покрытие профилей не обеспечивает длительную защиту их от коррозии в атмосферных условиях.

В условиях закрытого помещения при отсутствии коррозионно-активных агентов, отсутствии увлажнения поверхности цинкового покрытия адсорбционной пленкой влаги и минимальном увлажнении фазовой пленкой влаги (10 ч/год) коррозионная стойкость цинкового покрытия на профилях Javelin 24 и Prelude 24 равна или превышает 50 лет. При увлажнении поверхности фазовой пленкой влаги коррозионная стойкость цинкового покрытия резко уменьшается и составляет при продолжительности увлажнения фазовой пленкой влаги 1000 ч/год на профиле Javelin 24 - 0,5 года, на профиле Prelude 24 -3,3 года. Расчетные данные свидетельствуют, что длительная коррозионная стойкость цинковых покрытий на профилях Javelin 24 и Prelude 24 может быть обеспечена только при минимальном увлажнении их поверхности фазовой и адсорбционной пленками влаги, т.е. при эксплуатации профилей в условиях помещений с нормальным влажностным режимом по СНиП II-3-79.

Директ

оррозии

и защиты ррозии Виаку

Г.В.Оносов

В.В.Ларионов